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The hypothesis that using nonsquare and nonuniform grids, with greatest density 
in the region of maximum change, produces minimum overall error in finite-difference 
solutions of a system of two nonlinear coupled second-order differential equations 
is examined. The model problem is Poiseuille pipe flow. The hypothesis is found through 
numerical experimentation to be false. Furthermore, it is found that maximum accuracy 
and minimum computation time are obtained through the use of an optimal sequence 
of iteration parameters in the alternating direction-iteration solution sequence with 
double-precision calculation on a square grid with 0.1 spacing. 

Numerical studies of fluid-dynamics problems are quite often concerned with 
flow around solid bodies where fairly large velocity gradients are encountered. 
In the vicinity of the body, it is often convenient to use a mesh system which is 
smaller than the mesh system imposed over most of the flow field and which 
might even be a nonsquare mesh system. Examples of this approach are seen 
in the studies of Whitaker and Wendel [l] and Thoman and Szewcyzk [2]. This 
study is concerned with a comparison of the numerical error that arises in the 
solution of the Navier-Stokes equations when a nonsquare, nonuniform mesh 
system is used. This type of problem is of interest because the velocity (or vorticity 
or stream function) can change rather sharply and the effect of the change is 
more pronounced in certain regions than in other regions. Therefore, it is felt 
that by increasing the density of the mesh points in the regions of greatest change, 
a marked improvement in the overall accuracy of the solution could be effected 
without the expense of increasing the density of the grid system everywhere. 
We offer the following study to show that such generalizations are not necessarily 
correct. 

* Supported by NASA Contract No. NGR 44-005-065. 
+ Present address: TRW Systems Group, San Bernardino, California. 
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THE PROBLEM 

The problem chosen for study is that of Poiseuille flow in a pipe for which 
there is a well-known exact solution (see Schlichting [3]). This example arose 
during an investigation to determine numerically the onset of turbulence in 
Poiseuille pipe flow. The mathematical problem consisted of axisymmetrically 
perturbing the Poiseuille velocity distribution at some point in the pipe (see 
Crowder and Dalton [4]). Since the perturbation is expected to generate significant 
gradients of the vorticity and the stream function, it was felt desirable to use a denser 
mesh system in the vicinity of the perturbation as well as on the boundaries. 
The denser mesh system should allow for a more accurate representation of both 
the vorticity and the stream function. In checking the calculation procedure 
for the perturbed flow, it was noticed that varying numerical errors were obtained 
for the unperturbed solution when various nonuniform, nonsquare grid representa- 
tions were used. 

Investigation of the literature for nonuniform mesh systems showed the 
following: For a uniform mesh system, Young [5] gives the error term for a 
second partial derivative as behaving like (h2/4) a4U/8x4, where k is the uniform 
mesh spacing in the x direction. Young then gives a difference representation 
for the same second derivative over a nonuniform mesh system, i.e., when the 
mesh spacing goes like k on one side of the grid point in question and like sk 
(0 < s < 1) on the other side. However, no error term is given for the nonuniform 
mesh case. Analysis of the error involved yields that the error term goes like 
(1 - s)(k/3) a3U/W. Hence, a lower-order error in k is introduced for a non- 
uniform mesh system than for a uniform mesh system. It is also noted that for 
some physical problems a31J/ax3 is significantly greater than a4U/ax4. Hence, 
we choose to solve the problem of unperturbed Poiseuille pipe flow in order to 
obtain comparisons of the effect of the grid system on the accuracy of the finite- 
difference approximations to the Navier-Stokes equations. 

GOVERNING DIFFERENTIAL EQUATIONS 

A nondimensional axisymmetric form of the Navier-Stokes equations for 
viscous, incompressible Aow in a circular pipe is 

G, - F, ($), + F = f [(+ (rG)& + G,] (1) 

and 

581/7/1-3 

-rG, 
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where G is the vorticity, F is the stream function, and R is the Reynolds number. 
The Reynolds number is a parameter and is given by 

where P is the average axial velocity component, D is the pipe diameter, and 
v is the kinematic viscosity of the fluid. 

The boundary conditions for the above differential equations are 

G = 2r, F, = 0 on z = 0, (34 

G, = F,, = 0 on 2 = L, 

G=F=O on r=O, 

F, = 0, F = 0.25 on r=l, 

VW 

(3c) 

W) 

where z = 0 is the upstream boundary, z = L is the downstream boundary, 
r = 0 is the centerline of the pipe, and r = 1 is the wall of the pipe. The initial 
conditions of the problem are given by 

F = $r” - $r4 for O<z<L, 
O<r<\<, @a) 

and 

G = 2r. (4b) 

With the above boundary and initial conditions, Eqs. (3) and (4), Eqs. (1) and (2) 
admit to an analytic solution, 

and 

F = Qr” - &J 

G = 2r. 

Pa) 

@b) 

This analytic solution is the steady flow solution to the above problem. Since 
we know this solution, we can use it as a comparison to determine the accuracy 
of the numerical procedures used to solve the mixed boundary-initial value 
problem. 

For a derivation of the governing equations, see Schlichting [3]. For a discussion 
of the boundary conditions see Crowder and Dalton [4]. 



NONUNIFORM MESH SYSTEMS 35 

DIFFERENCE EQUATIONS 

The solution of the differential equations is obtained by the use of the method 
of finite differences. For this technique, a net of grid points is introduced onto 
the region upon which the solution is to be found. We have chosen not to use 
equally spaced grid points, and therefore any function CD is given by 

where 

@(r, z, t) = cqri , zj , 1%) = @i”,j , 

ri = i Ar,,, , 
VL=l 

Ar, = 0, 1 G i G Ll,, 

z, = i AZ,, AZ, = 0, 1 d j < Jmax 
m-1 

and 

t, = i At,, At, = 0, Atzm+l = At,, 
m=o 

(0 d &I e q. 

VW 

t6b) 
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For the above grid, central differences in space are used while forward differences 
in time are used. The operators which we will use are defined as follows: 

@Z = (@:.i), = AZ, :Az, [- -+- @b-l 
3 3+1 3 

+&L- A!.%) gy3 + A$ 
&+I @?3+1 3+1 1 

- Az$+l @,,,(rj , 5, t,) @3-l < t < z3+A (74 
@ 2 

22 = (%)*Z = Azj + Az3+l [ L @y,j-l AZ3 

- 
( ‘+-&) Azj 3+1 

qi + + q3+1] 
3+1 

+ (4 - 4+x) 

3 @e&i , z3 7 GJ 

- & (Az3 - 4 4, + A$+,) @sz&i , 6 tn> 

(zj-1 Q t d zj+A (3 
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- Ari3qri+1 @,,,(5, zj ) tn) (ri--l d 5 < ri+d, (7~) 

and 

- & (Ar,” - Ari Ari+l + Arf+J @T,,,(5, zi , L) 

(ri-l d t G ri+d, (W 

cDp, = (tqj), = -& 
II 

Using Eq. (7) allows Eq. (2) to be approximated by 

(7e) 

The multipliers, pk , in Eq. (8) are analogous to the Wachpress-Goode parameters. 
The Wachpress-Goode parameters are derived for Laplace’s equation on a 
square region and are given by 

pk = b ; (k+l)l(n+l) 
0 k = 1, 2 ,..., m, (9) 
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where a and b are, respectively, the maximum and minimum eigenvalues of the 
operator matrix associated with the difference equations which approximate 
the Laplacian differential equation on a square, equally spaced grid (see Varga [6]). 
Since our differential equation is not the Laplacian and we allow our grid to be 
unequally spaced but rectangular over the axisymmetric flow field, then no analytic 
derivation of the values which pk should have is available. Nevertheless, if we 
use the above formulation for the pk for our problem, we find that the maximum 
and minimum eigenvalues of the operator matrix for the radial derivatives are 
always larger and smaller, respectively, than those for the operator matrix for 
the axial derivatives. Therefore, a and b are taken as the maximum and minimum 
eigenvalues of the operator matrix for the radial derivatives. Numerical experi- 
mentation also showed with this choice of a and b that use of five parameters 
for the iteration was optimal. The actual values of the pK used in the calculations 
are given in Table 1. 

TABLE 1 

pk for Use in Equation (8) 

Grid PK 

14.4554279116205 
45.5195753385026 

I 143.339356791502 
451.370010651717 

1421.34645414991 

II 
and 
III 

14.4366669994227 
46.5707761839117 

150.231157542023 
484.625822152668 

1563.33873305511 

IV 
and 

VI 

14.6371115664442 
46.5190382231239 

147.844805813021 
469.874000856377 

1493.33333333333 

14.5031251532618 
33.1157808959826 

V 75.6150783201431 
172.656054444876 
394.235036169115 
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Again, using Eq. (7) allows Eq. (1) to be approximated by 

and 

+ [+ m3. + A] (W1), + f (GT,:'),, , (lob) I 

where we allow the time step, At,, to vary from step to step in the solution 
process subject to the restriction 

At,,+, = Atzm+2. (11) 

The time step is used as a parameter to speed the iteration process and to insure 
convergence. The time step is selected such that the average number of iterations 
for the solutions at the (2~ + 1)-st and (2m + 2)-nd times to converge is kept 
near a minimum. 

For the derivatives involved in the boundary conditions, we use the differentiated 
Lagrangian interpolation formulas to obtain their finite-difference representation 
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G;,j = 0, (124 

and 

Fpmaxsj = 0.25 

(FTm,,,Jr = 0. 

Wh) 

(12i) 

The initial conditions are given by 

and 

WI 

The difference equations, Eqs. (8) and (lo), are solved on various grids, specified 
later, subject to the boundary and initial conditions, Eqs. (12) and (13). The 
method of solution used is an adaptation of the alternating direction implicit 
method of Peaceman and Rachford given by Young [S]. 

Before explaining the calculation procedure, we set forward the convergence 
tests that are applied. For the stream function we used 

where m is the number of p values used in the iterative procedure and k is the 
stream-function iteration counter. We chose Ed such that Ed 3 1.0 x 1O-5. 

The tests for convergence of the vorticity are 

In Eqs. (14) and (15) I is the vorticity iteration counter. Equation (15a) was used 
where i < Imax and Eq. (15b) was used when i = Imax . We demanded that 
%b = , 2Eg. 7 and that l s. > l ~ at all iterations. 
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The solution to the difference equations is accomplished iteratively by first 
advancing the vorticity using Eqs. (lOa) and (lob) for alternate time steps. Then 
Eq. (8) is iterated to convergence and the vorticity is recalculated on the basis of 
the updated stream function. This sequence is continued until the vorticity 
converges. Then the process is begun again with the alternate equation (lOa) 
and/or (lob) for the next time step. 

GRID SYSTEM 

The notation used for specifying a grid, (a, b, c), means that, starting at position 
u, increment by c until b is reached. The grids which we will compare are the 
following: 

Grid I r< = (0.0,0.5,0.1), (0.5,0.7,0.05), 
(0.7,0.9, O.l), (0.9, 1.0, 0.05), 

zj = (0.0, 1.9,0.1), (1.9,2.1,0.05), 
(2.1, 5.0,O.l); 

Grid II ri = (0.0,0.5,0.1), (0.5, 1.0,0.05), 
zj = (0.0, 1.9,0.1), (1.9,2.1,0.05), 

(2.1, 5.0,O.l); 
Grid III ri = (0.0,0.5, O.l), (0.5, 1.0, 0.05), 

zj = (0.0,0.2,0.05), (0.2, 1.9, O.l), 
(1.9, 2.1, 0.05), (2.1, 4.8,O.l) 
(4.8, 5.0,0.05); 

Grid IV ri = (0.0, 1.0, O.OS), 
zj = (0.0, 5.0,O.l); 

Grid V ri = (0.0, 1.0, O.l), 
zj = (0.0, 5.0,O.l); 

Grid VI ri = (0.0, 1.0,0.05), 
zj = (0.0, 5.0,0.05). 

Grids I, II, and III were used because they give a dense grid system in the 
region of the disturbance and/or the flow-field boundaries. Grid IV gives an 
additional density in the radial direction, which is the direction of most uncertainty 
in the difference approximations. 

Grids V and VI furnish comparisons of the results on square grids as well as 
an estimate of the grid-size convergence. 

The problem which was of major interest to the authors was the stability of 
Poiseuille pipe flow. For this problem it seemed desirable to have a denser mesh 
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system in the vicinity of the point at which the disturbance is applied (r = 0.6, 
z = 2.0). Therefore, this is the common property of the nonuniform grids. In 
orde to cut computation time it is also desirable to keep the number of mesh points 
to a minimum, so the grids are made as sparse as possible. 

The experimental error analysis of the solution of the difference equations 
on the above grids which we present is shown for both single- and double-precision 
calculations of the solution for each grid. We define the errors e(F) and e(G) at 
any grid point by 

e(Fi,j) = (Fi,j -J’J/‘Pi , (164 

4%) = (Gi,j - @iGi, (16’9 

where p and C? are true solutions given by Eq. (5) and F and G are calculated 
from Eqs. (8) and (10) with boundary and initial conditions, Eqs. (12) and (13). 

The relevant quantities for comparison are 

e,(G) = $- Im$-’ c e(GJ, 
s=l j 

and 

(174 

where N = (Imax)(JmaX) and N1 = N - LX. The absence of limits on the 
summation implies summing over the range of the index. 

RESULTS 

The solution to Eqs. (8) and (10) was obtained at four consecutive steps for 
each grid system. The errors, as specified by Eq. (17), at each of these time steps 
are presented in Tables 2-5, (the second number in each column is the power of 
10 which should multiply the first number in order to obtain the true value), 
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which show that Grid II is the best of the nonuniform Grids I, II, and III and 
that Grid I is the worst mesh system tested based on a comparison of the errors. 
The mesh systems with uniform grid spacing, Grids IV, V, and VI, are all signifi- 
cantly better than Grids I, II, and III. The grid system with 0.05 square spacing, 

TABLE 2 

Mean Relative Error, Time Step 1, Time 0.01 

Grid system 
- 
e(F) e(G) es(C) 

I S” 1.815 -3 -1.041 -2 -4.859 -5 - .1451 
I Db 1.819 -3 -1.045 -2 -4.815 -5 - .1457 

II s 3.240 -3 -4.216 -3 -1.996 -5 -6.716 -2 
II D 3.245 -3 -4.272 -3 -1.953 -5 -6.807 -2 

III s 3.240 -3 -4.227 -3 -2.002 -5 -6.734 -2 
III D 3.245 -3 -4.278 -3 -1.955 -5 -6.816 -2 
IV s -1.232 -5 4.385 -5 -4.288 -7 9.293 -4 
IV D -5.564 -15 1.601 -14 -6.432 -17 3.376 -13 
vs -3.211 -6 1.930 -6 -6.908 -7 -1.432 -5 
VD -1.739 -15 -2.086 -14 -1.010 -16 -2.193 -14 

VI s -1.492 -5 4.991 -5 -4.218 -1 1.057 -3 
VI D -4.248 -15 1.562 -14 -7.876 -17 3.297 -13 

u S indicates single-precision calculation. 
* D indicates double-precision calculation. 

TABLE 3 

Mean Relative Error, Time Step 2, Time 0.02 

Grid system e(F) edG) e(G) 

I S’ 1.808 -3 -1.015 -2 -9.736 -5 - .1408 
I Db 1.813 -3 -1.020 -2 -9.651 -5 - .1415 

II s 3.236 -3 -4.103 -3 -3.993 -5 -6.505 -2 
II D 3.242 -3 -4.157 -3 -3.914 -5 -6.592 -2 

III s 3.236 -3 -4.113 -3 -4.007 -5 -6.520 -2 
III D 3.242 -3 -4.162 -3 -3.924 -5 -6.601 -2 
IV s -1.242 -5 4.308 -5 -9.236 -7 9.232 -4 
IV D -5.504 -15 1.595 -14 -1.083 -16 3.372 -13 
vs -3.584 -6 -5.065 -7 -1.244 -6 6.872 -6 
VD -1.744 -1.5 8.332 -16 -2.201 -16 1.137 -14 

VI s -1.484 -5 4.593 -5 8.741 -7 9.819 -4 
VI D -4.281 -15 1.510 -14 -1.498 -16 3.201 -13 

0 S indicates single-precision calculation. 
b D indicates double-precision calculation. 
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TABLE 4 

Mean Relative Error, Time Step 3, Time 0.031 

Grid system e(F) e(G) dG) at(G) 

I SQ 1.801 -3 --1.017 -2 -1.488 -4 - .1404 
I Db 1.806 -3 -1.007 -2 -1.467 -4 - .1391 

II s 3.233 -3 -4.057 -3 -6.076 -5 -6.400 -2 
II D 3.238 -3 -4.099 -3 -5.948 -5 -6.470 -2 

III s 3.233 -3 -4.065 -3 -6.100 -5 -6.412 -2 
III D 3.238 -3 -4.105 -3 -5.966 -5 -6.478 -2 
IV s -1.308 -5 4.197 -5 -1.438 -6 9.102 -4 
IV D -5.545 -15 1.596 -14 -1.608 -16 3.384 -13 
vs -4.646 -6 -6.380 -7 -1.882 -6 1.180 -5 
VD -1.765 -15 5.457 -16 -3.315 -16 9.317 -15 

VI s -1.493 -5 4.540 -5 -1.310 -6 9.796 -4 
VI D -4.374 -15 1.395 -14 -2.305 -16 2.975 -13 

a S indicates single-precision calculation. 
b D indicates double-precision calculation. 

TABLE 5 

Mean Relative Error, Time Step 4, Time 0.042 

Grid system e(F) 

I S” 1.794 -3 
I Dh 1.800 -3 

II s 3.230 -3 
II D 3.235 -3 

III s 3.229 -3 
III D 3.235 -3 
IV s -1.359 -5 
IV D -5.559 -15 
vs -4.543 -6 
VD -1.781 -15 

VI s -1.534 -5 
VI D -4.359 -15 

e(G) Q(G) dG> 

-9.901 -3 -2.003 -4 - .1360 
-9.942 -3 -1.971 -4 - .1366 
-3.993 -3 -8.159 -5 -6.266 -2 
-4.042 -3 -7.989 -5 -6.347 -2 
-4.067 -3 -8.187 -5 -6.385 -2 
-4.047 -3 -8.012 -5 -6.355 -2 

4.088 -5 -1.921 -6 8.968 -4 
1.570 -14 -1.889 -16 3.335 -13 

-1.130 -6 -2.455 -6 3.698 -5 
-4.780 -16 -4.236 -16 9.493 -15 

4.914 -5 -1.723 -6 1.066 -3 
1.467 -14 -3.110 -16 3.142 -13 

a S indicates single-precision calculation. 
b D indicates double-precision calculation. 

Grid VI, gives a better representation of the stream function and boundary 
vorticity than was obtained from Grid IV, the uniformly spaced, nonsquare 
mesh system. However, Grid IV gives a better representation of the interior 
vorticity than does Grid VI. The grid system with 0.1 square spacing, Grid V, 
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has less error for all times shown, as seen in Tables 2-5; this is true for both 
single and double precision. The overall vorticity values are seen to have the 
least error for both single- and double-precision computation on Grid V for 
the three greatest time values as seen in Tables 3-5. Grid VI has the least error 
for both single- and double-precision calculation of the interior vorticity for 
all time levels shown. However, the error in boundary vorticity for Grid VI 
is greater than that for Grid V. Therefore, we rank the grid systems in order of 
increasing preference from the standpoint of errors produced in the solutions as 
follows: I, III, II, IV, VI, and V. Also due to the magnitude of the change in 
the errors, it is evident that use of double-precision calculations for the non- 
uniform grids, Grids I, II, and III, effects no appreciable improvement in the 
accuracy of the solution. For the uniform grids, Grids IV, V, and VI, double- 
precision calculations show an improvement consistent with the increased number 
of available digits for the computation. 

The increase in the error of the boundary vorticity over the interior vorticity 
obtained in all of the solutions is expected. Since the value of the boundary vorticity 
is calculated by differencing the stream function, any errors in the stream function 
are magnified in the value obtained for the boundary vorticity. This magnification 
is an inverse function of step size in the radial direction. Therefore, the errors 
in the values of the boundary vorticity are seen to be consistent with the grid 
system used. 

The results which are presented in Tables 2-5 could be expanded to show 
individual errors at grid points, or to show errors for each grid line, but this is 
unnecessary since the values presented are indicative of the results everywhere. 

The reason that the interior mean vorticity increases with time is that the errors 
in the boundary vorticity are spread inward slowly as the solution progresses. 
For time step 1 the points at which the vorticity is significantly in error are on the 
boundary only. At time step 4, the next two interior grid lines also show noticeable 
error in the vorticity. Table 6 shows the computing time expended to calculate 
the solutions for the four time steps presented in Tables 2-5. 

The sequence of times obtained for either single- or double-precision calculations, 

TABLE 6 

Computation Time in Minutes 

Grid I II III IV V VI 

Single 
precision 

Double 
precision 

1.16 1.38 1.51 1.48 .95 2.79 

1.22 1.54 1.60 1.72 .83 3.32 
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using the same convergence criteria, is as expected since the time required to 
compute the solution increases with an increasing number of grid points. However, 
when we compare the times involved between single- and double-precision calcula- 
tions, we note that double-precision calculation takes less time for Grid V than 
does single-precision. This is the reverse of what happens for all the other grids. 
Therefore, from the standpoint of computation time involved in the calculation, 
the grids are ranked in increasing order of preference as VI, III, IV, II, I, and V 
for single-precision and as VI, IV, III, II, I, and V for double-precision calculation. 
Hence, the preferred grid system from this standpoint is Grid V with double- 
precision calculations. 

SYMMARY 

On the basis of the results obtained, we conclude that calculation of the stream 
function and vorticity for Poiseuille pipe flow is most accurately and efficiently 
accomplished using double-precision calculations on Grid V, a square, equally 
spaced mesh system of 0.1 grid size. This result is in direct contrast with the 
original hypothesis set out in the introduction, i.e., that nonuniform and nonsquare 
grids should allow an increased accuracy in the representation of the vorticity 
and stream function. 

REFERENCES 

1. S. WHITAKER AND M. M. WENDEL, Numerical solution of the equations of motion for flow 
around objects in channels at low Reynolds numbers. Appl. Sci. Res., Sect. A 12 (1962), 91. 

2. D. C. THOMAN AND A. A. SZEWCZYK, “Numerical Solutions of Time-Dependent Two-Dimen- 
sional Flow of a Viscous Incompressible Fluid over Stationary and Rotating Cylinders,” Heat 
Transfer and Fluid Mechanics Laboratory, Department of Mechanical Engineering, University 
of Notre Dame, Technical Report 66-14, 1966; Phys. Fluids 12 (1969), 11-76. 

3. H. SCHLICHTING, “Boundary Layer Theory,” 6th ed., McGraw-Hill, New York, 1968. 
4. H. J. CROWDER AND C. DALTON, On the stability of Poiseuille flow in a pipe, J. Comp. Phys., 

7 (1971), 12-31. 
5. D. M. YOUNG, JR., The numerical solution of elliptic and parabolic partial differential equa- 

tions, in “Survey of Numerical Analysis” (John Todd, Ed.), p. 380, McGraw-Hill, New York, 
1962. 

6. R. S. VARGA, “Matrix Iterative Analysis,” Prentice-Hall, Englewood Cliffs, N. J., 1963. 


